Пояснительная записка Рабочая программа курса составлена на основании следующих нормативно-правовых документов: 1. Федерального компонента государственного стандарта основного общего образования по математике, утвержденного приказом Минобразования России от 5.03.2004 г. № 1089. 2. Законом Российской Федерации «Об образовании» (статья 7, 9, 32). 3. Учебного плана МОУ СОШ №4 на 2024 – 2025 учебный год. В преподавании любой дисциплины нельзя учить всех одному и тому же, в одинаковом объёме и содержании, в первую очередь, в силу разных интересов, а затем и в силу способностей, особенностей восприятия, мировоззрения. Необходимо предоставлять обучаемым возможность выбора дисциплины для более глубокого изучения. Школьная программа по математике содержит лишь самые необходимые, максимально упрощённые знания. Практика показывает громадный разрыв между содержанием школьной программы по математике и теми требованиями, которые налагаются на абитуриентов, поступающих в высшие учебные заведения. Поступить в ВУЗ нашим выпускникам становится трудно не только в силу экономических и социально-политических условий, но и по причине несоответствия знаний выпускника, которого добросовестно учили по программе, и уровнем вступительных экзаменов в вуз. Учащиеся 11 классов, перегружаясь, вынуждены посещать дополнительно платные курсы (которые не всем доступны), а учителя школ вынуждены организовывать для них разного рода дополнительные занятия. В целях наилучшего результата делать это надо не только в последние годы обучения, но значительно раньше. Главная цель предлагаемой программы заключается не только в подготовке к вступительному экзамену, и в овладении определённым объём знаний, готовых методов решения нестандартных задач, но и в том, чтобы научить самостоятельно мыслить, творчески подходить к любой проблеме. В связи с этим и создаётся программа курса по математике. Курс "Практикум решения задач по математике" рассчитан на 34 часа для учащихся 11 классов. Данная программа курса сможет привлечь внимание учащихся, которым интересна математика, кому она понадобится при учебе, подготовке к экзаменам, в частности, к ЕГЭ. Слушателями этого курса могут быть учащиеся различного профиля обучения. Данный курс имеет прикладное и общеобразовательное значение, способствует развитию логического мышления учащихся, систематизации знаний при подготовке к выпускным экзаменам. Используются различные формы организации занятий, такие как лекция и семинар, групповая, индивидуальная деятельность учащихся. Результатом предложенного курса должна быть успешная сдача ЕГЭ и централизованного тестирования. Цели курса: На основе коррекции базовых математических знаний учащихся за курс 5 – 11 классов совершенствовать математическую культуру и творческие способности учащихся. Расширение и углубление знаний, полученных при изучении курса алгебры. Закрепление теоретических знаний; развитие практических навыков и умений. Умение применять полученные навыки при решении нестандартных задач в других дисциплинах. Создание условий для формирования и развития у обучающихся навыков анализа и систематизации, полученных ранее знаний; подготовка к итоговой аттестации в форме ЕГЭ. Задачи курса: Реализация индивидуализации обучения; удовлетворение образовательных потребностей школьников по алгебре. Формирование устойчивого интереса учащихся к предмету. Выявление и развитие их математических способностей. Подготовка к обучению в ВУЗе. Обеспечение усвоения обучающимися наиболее общих приемов и способов решения задач. Развитие умений самостоятельно анализировать и решать задачи по образцу и в незнакомой ситуации; Формирование и развитие аналитического и логического мышления. Расширение математического представления учащихся по определённым темам, включённым в программы вступительных экзаменов в другие типы учебных заведений. Развитие коммуникативных и обще учебных навыков работы в группе, самостоятельной работы, умений вести дискуссию, аргументировать ответы и т.д. Виды деятельности на занятиях: лекция учителя, беседа, практикум, консультация, ИКТ технологии, дистанционное обучение. Особенности курса: 1. Краткость изучения материала. 2. Практическая значимость. 3. Нетрадиционные формы изучения материала. Умения и навыки учащихся, формируемые элективным курсом: навык самостоятельной работы с таблицами и справочной литературой; составление алгоритмов решения типичных задач; умения решения тригонометрических, показательных и логарифмических уравнений и неравенств; исследования элементарных функций решения задач различных типов. Планируемые результаты Изучение данного курса дает учащимся возможность: - повторить и систематизировать ранее изученный материал школьного курса математики; - освоить основные приемы решения задач; - овладеть навыками построения и анализа предполагаемого решения поставленной задачи; - овладеть и пользоваться на практике техникой сдачи теста; - познакомиться и использовать на практике нестандартные методы решения задач; - повысить уровень своей математической культуры, творческого развития, познавательной активности; - познакомиться с возможностями использования электронных средств обучения, в том числе Интернет-ресурсов, в ходе подготовки к итоговой аттестации в форме ЕГЭ. Содержание учебного предмета Тема 1. Решение текстовых задач (5 часов) Логика и общие подходы к решению текстовых задач. Простейшие текстовые задачи. Основные свойства прямо и обратно пропорциональные величины. Проценты, округление с избытком, округление с недостатком. Выбор оптимального варианта. Выбор варианта из двух возможных Выбор варианта из трех возможных Выбор варианта из четырех возможных. Текстовые задачи на проценты, сплавы и смеси, на движение, на совместную работу. Тема 2. Тригонометрические функции (5 часов) Вычисление значений тригонометрических выражений. Преобразования числовых тригонометрических выражений. Преобразования буквенных тригонометрических выражений. Тригонометрические уравнения и неравенства. Простейшие тригонометрические уравнения. Два метода решения тригонометрических уравнений: введение новой переменной и разложение на множители. Однородные тригонометрические уравнения. Тема 3. Решение задач по планиметрии (5 часов) Треугольник. Параллелограмм, прямоугольник, ромб, квадрат. Трапеция. Окружность и круг. Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Многоугольник. Сумма углов выпуклого многоугольника. Правильные многоугольники. Вписанная окружность и описанная окружность правильного многоугольника. Координатная плоскость. Векторы. Вычисление длин и площадей. Задачи, связанные с углами. Много конфигурационные планиметрические задачи. Тема 4. Решение задач по стереометрии (5 часов) Призма, ее основания, боковые ребра, высота, боковая поверхность; прямая призма; правильная призма. Параллелепипед; куб; симметрии в кубе, в параллелепипеде. Пирамида, ее основание, боковые ребра, высота, боковая поверхность; треугольная пирамида; правильная пирамида. Сечения куба, призмы, пирамиды. Представление о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр и икосаэдр). Величина угла, градусная мера угла, соответствие между величиной угла и длиной дуги окружности. Угол между прямыми в пространстве; угол между прямой и плоскостью, угол между плоскостями. Расстояние от точки до прямой, от точки до плоскости; расстояние между параллельными и скрещивающимися прямыми, расстояние между параллельными плоскостями. Площадь поверхности составного многогранника. Тема 5. Применение производной (5 часов) Понятие о производной функции, геометрический смысл производной. Физический смысл производной, нахождение скорости для процесса, заданного формулой или графиком. Уравнение касательной к графику функции. Производные суммы, разности, произведения, частного. Производные основных элементарных функций. Вторая производная и ее физический смысл. Исследование функций. Применение производной к исследованию функций и построению графиков. Наибольшее и наименьшее значение функций. Примеры использования производной для нахождения наилучшего решения в прикладных, в том числе социально- экономических, задачах. Исследование произведений и частных. Исследование тригонометрических функций. Исследование функций без помощи производной. Тема 6. Решение заданий повышенной и высокой сложности (7ч) Тригонометрические уравнения: методы решений и отбор корней. Арифметический способ. Алгебраический способ. Геометрический способ. Основные методы решения тригонометрических уравнений. Тригонометрические уравнения, линейные относительно простейших тригонометрических функций. Тригонометрические уравнения, сводящиеся к алгебраическим уравнениям с помощью замены. Метод разложения на множители. Комбинированные уравнения. Многогранники: типы задач и методы их решения. Расстояния и углы. Расстояние между двумя точками. Расстояние от точки до прямой. Расстояние от точки до плоскости. Расстояние между скрещивающимися прямыми. Угол между двумя прямыми. Угол между прямой и плоскостью. Угол между плоскостями. Площади и объемы. Площадь поверхности многогранника. Площадь сечения многогранника. Объем многогранника. Системы неравенств с одной переменной. Решение показательных и логарифмических неравенств. Показательные неравенства. Логарифмические неравенства. Смешанные неравенства. Системы неравенств. Планиметрические задачи с неоднозначностью в условии (многовариантные задачи) Экономическая задача. Функция и параметр. Функции, заданные в явном виде. Применение свойств функции. Функции, заданные в неявном виде. Решение задач разными способами. Задачи на целые числа. Делимость целых чисел. Десятичная запись числа. Сравнения. Выражения с числами. Выражения с переменными. Методы решения уравнений и неравенств в целых числах. Итоговое занятие. Тематическое планирование Название темы № п/п Кол-во часов Контрольных работ 1 Решение текстовых задач 5 - 2 Тригонометрические функции 5 диагностическая работа в формате ЕГЭ 3 Решение задач по планиметрии 5 1 4 Решение задач по стереометрии 5 1 5 Применение производной 5 1 6 Решение заданий повышенной и высокой сложности 7 1 7 Повторение курса алгебры и математического анализа X-XI классов 1 1 Итого 9 Календарно-тематическое планирование Дата № Тема занятий Теория Практика 1 Простейшие текстовые задачи. Выбор оптимального варианта. 0,5 0,5 2 Текстовые задачи на проценты, сплавы и смеси. 0,5 0,5 3 Текстовые задачи на проценты, сплавы и смеси. 4 Текстовые задачи на движение и совместную работу 5 Текстовые задачи на движение и совместную работу 6 Преобразования числовых и буквенных тригонометрических выражений. 7 Преобразования числовых и буквенных тригонометрических выражений. 1 8 Методы решения тригонометрических уравнений 1 9 Методы решения тригонометрических уравнений 1 10 Методы решения тригонометрических уравнений 1 1 0,5 0,5 1 0,5 0,5 11 Вычисление длин и площадей 0,5 0,5 12 Задачи, связанные с углами 0,5 0,5 13 Углы и расстояния в пространстве 0,5 0,5 14 Углы и расстояния в пространстве 1 15 Много конфигурационная планиметрическая задача 0,5 0,5 16 Параллелепипед, куб 0,5 0,5 17 Параллелепипед, куб 1 18 Призма 1 19 Пирамида 1 20 Составные многогранники 1 21 Применение производной к исследованию функций 1 22 Применение производной к исследованию функций 1 23 Исследование произведений и частных 1 24 Исследование тригонометрических функций 1 25 Исследование функций без помощи производной 1 26 Тригонометрические уравнения 0,5 27 Углы и расстояния в пространстве 28 Неравенства, системы неравенств 0,5 1 0,5 0,5 29 Неравенства, системы неравенств функций. 30 Много конфигурационная планиметрическая задача 1 0,5 31 .Экономическая задача 1 32 Уравнения, неравенства, системы с параметром 0,5 0,5 33 Числа и их свойства 0,5 0,5 34 Итоговый урок Учебно-методическое обеспечение 1. 2. 3. 4. 0,5 Открытый банк задач ЕГЭ: http://mathege.ru Он-лайн тесты: http://uztest.ru/exam?idexam http://reshuege.ru 5.ФИПИ http://fipi.ru 6. МИОО http://www.mioo.ru/ogl.php# 7. http://shpargalkaege.ru/ 1